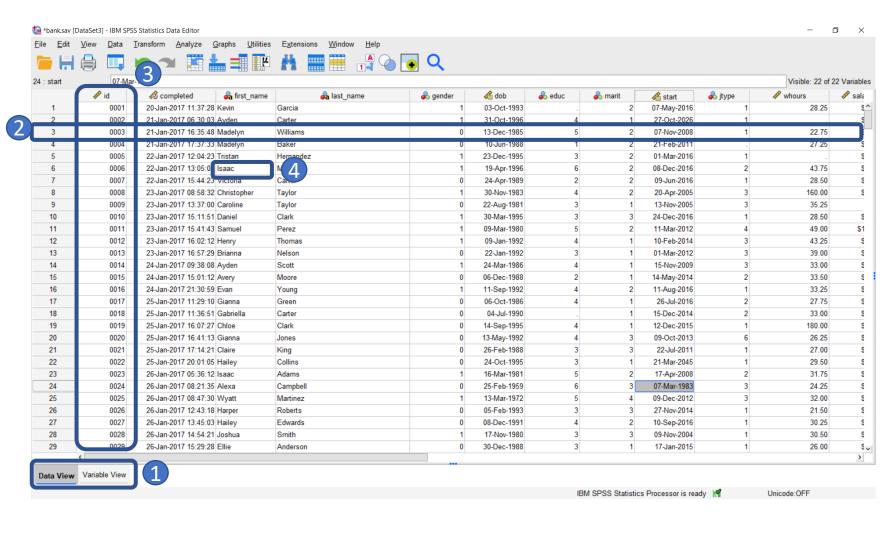


IBM SPSS Statistics


The Process of Survey Analysis

Level of Measurement

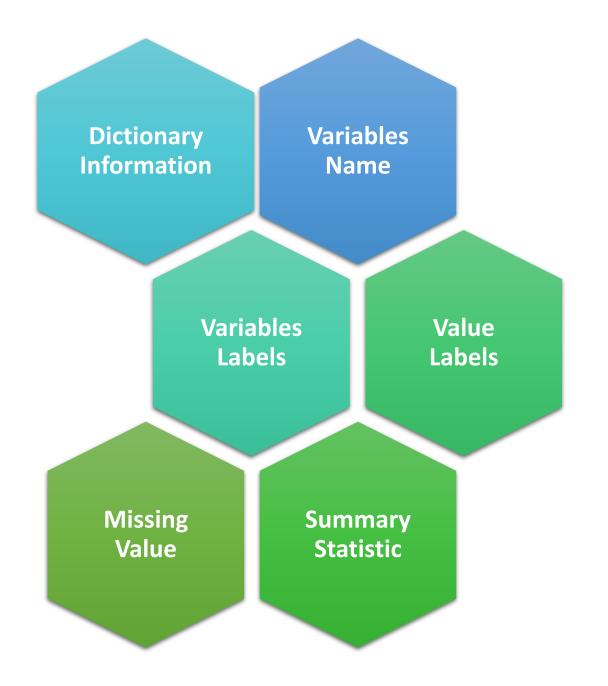
Data View

- tabs for switching between Data View and Variable View
- Columns of cells are called variables.
- Rows of cells are called **observation**
- values refer to cell contents

Variable View

Name	Label	Value	5 G	ender	0 = "female" 1 = "male"
id	Questionnaire identifier				
completed	Date and time that questionnaire was completed				
first_name					
last_name			7 E	duc	1 = "Middle school o
gender					2 = "High school" 3 = "Undergraduate"
dob	Date of birth				4 = "Bachelor's"
educ	Highest completed education level				5 = "Master's"
marit	Marital status				6 = "PhD or higher" 7 = "No answer"
start	Date of enrollment in company		O	•.	
jtype	Current job type		8 M	arit	1 = "never married" 2 = "currently marrie
whours	On average, how many hours do you work per week?				3 = "divorced"
salary	Gross monthly salary				4 = "widowed"
overall	I'm happy with my job				5 = "No answer"
q1	This company takes good care of its employees.		10		1 = "Sales"
q2	This company supports me in my work.		10 J	type	2 = "Marketing"
q3	My daily tasks are interesting.				3 = "IT"
q4	I like my colleagues.				4 = "Middle Manage 5 = "Upper Manage
q5	My workspace is good.				6 = "No answer"
q6	My salary is good.		13+	verall – q9	
q7	My secondary labor conditions are good.		U	veran – ya	1 = "Totally disagree" 10 = "Totally agree"
q8	My work is meaningful.				11 = "No answer"
q9	The cooperation with my colleagues is good.				

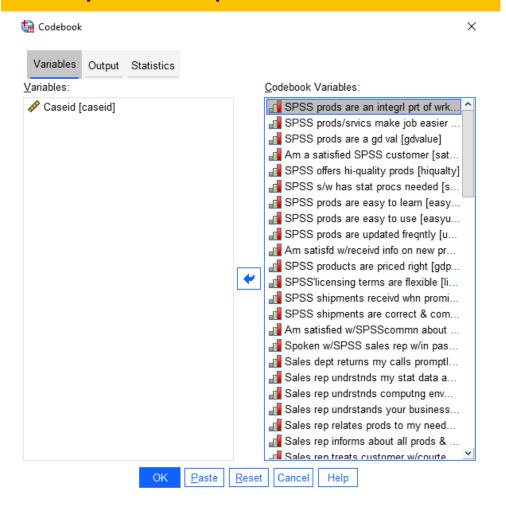
Basic Data Checking The Common Data Problems


Run frequencies on all variables

Run descriptive on all scale variables

Run crosstabulation to check whether skip were correctly followed

Run additional crosstabulation to look for odd pattern


Create a Variable Codebook

1.1 Codebook

Data: "SPSS_CUST.SAV"

Analyze >> Reports >> CodeBook

freqspss

		Value	Count	Percent
Standard Attributes	Position	86		
	Label	How frequently do you use SPSS		
	Туре	Numeric		
	Format	F1		
	Measurement	Ordinal		
	Role	Input		
Valid Values	1	Don't use very much at all	85	8.9%
	2	Only for special projects	95	9.9%
	4	Monthly	160	16.8%
	5	Weekly	120	12.6%
	6	Daily/multiple times in a week	250	26.2%
	7	Multiple times in a day	115	12.0%
Missing Values	3	Quarterly	115	12.0%
	System		15	1.6%

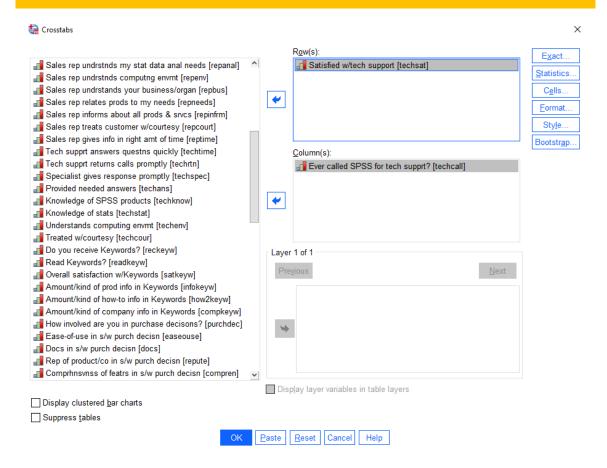
1.2 Using Frequencies to Check Data

Analyze >> Descriptive >> Frequencies

Frequencies

Statistics

How frequently do you use SPSS


N	Valid	825
	Missing	130

How frequently do you use SPSS

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Don't use very much at all	85	8.9	10.3	10.3
	Only for special projects	95	9.9	11.5	21.8
	Monthly	160	16.8	19.4	41.2
	Weekly	120	12.6	14.5	55.8
	Daily/multiple times in a week	250	26.2	30.3	86.1
	Multiple times in a day	115	12.0	13.9	100.0
	Total	825	86.4	100.0	
Missing	Quarterly	115	12.0		
	System	15	1.6		
	Total	130	13.6		
Total		955	100.0		

1.3 Checking Skip Pattern

Analyze >> Descriptive >> Crosstabs

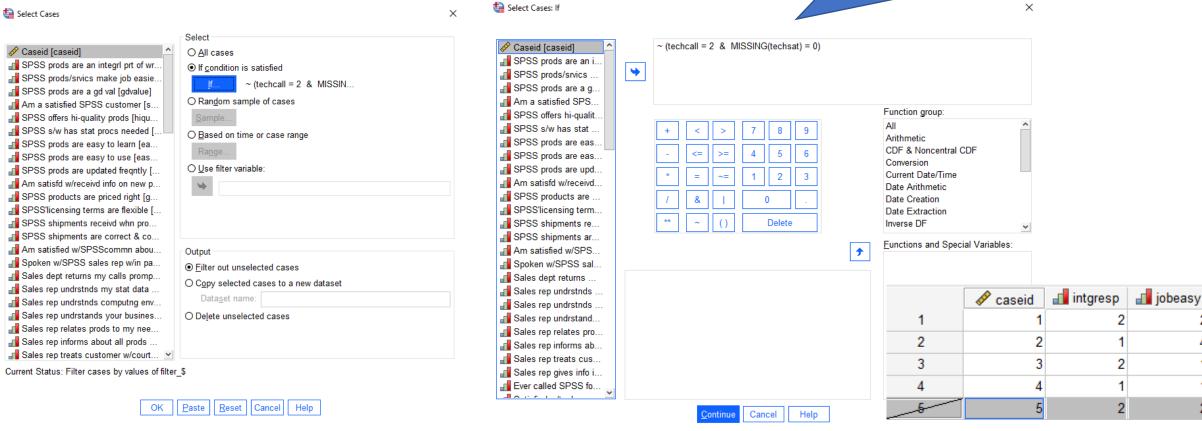
Crosstabs

Case Processing Summary

•	,
	_
	Caene

	Cases						
	Va	lid	Miss	sing	To	tal	
	N	Percent	N	Percent	N	Percent	
Satisfied w/tech support * Ever called SPSS for tech supprt?	571	59.8%	384	40.2%	955	100.0%	_

Satisfied w/tech support * Ever called SPSS for tech supprt? Crosstabulation

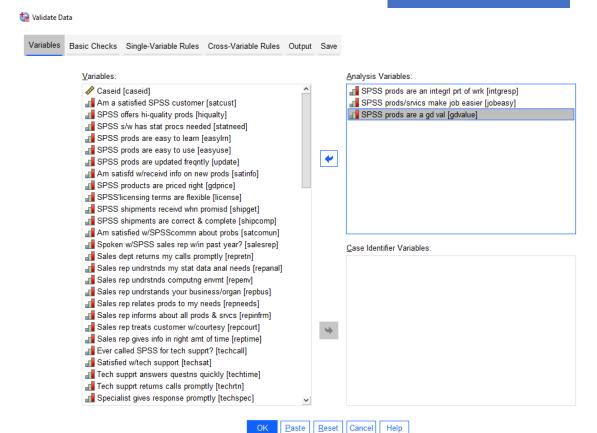

Ever called SPSS for tech

Count

		suppr		
		Yes	No _	Total
Satisfied w/tech support	Strongly Agree	75	(1)	76
	Agree	245	0	245
	Neither Agree Nor Disagree	60	0	60
	Disagree	140	0	140
	Strongly Disagree	50	0	50
Total		570	1	571

Exclude Incorrect Value

Data >> Select Cases

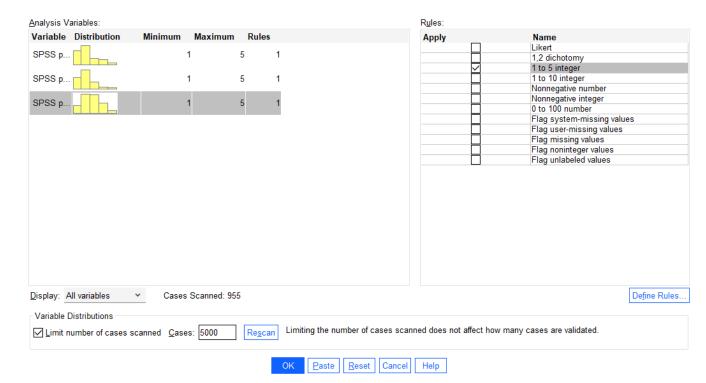

~ (techcall = 2 & MISSING(techsat) = 0)

2. Data Validation

Data: "SPSS_CUST.SAV"

Data >> Validation >> Validate Data

Select Variables


Validate Data	1		Ide	ntify	Basic Checks
Variables I	Basic Checks	Single-Variable Rules	Cross-Var	iable Rules	Output Save
Analysis Var Elag varial		y of the following checks			
<u>M</u> aximum pe	rcentage of mis	ssing values:	70	(Applies to	all variables)
Maximum pe	r <u>c</u> entage of cas	ses in a single category:	95	(Applies to	categorical variables only)
Maximum pe	rcentage of cat	egories with count of 1:	90	(Applies to	categorical variables only)
Minimum co	efficient of <u>v</u> aria	tion:	0.001	(Applies to	scale variables only)
Minimum <u>s</u> ta	ndard deviation		0	(Applies to	scale variables only)
Case Identifie ✓ Flag <u>i</u> ncor ✓ Flag <u>d</u> uplie	nplete IDs				
☑ Flag <u>e</u> mpty	/ cases Defi	ne Cases <u>B</u> y: All variab	les in datas	set except ID	∪variables ❤
A case is c	onsidered empt	y if all relevant variables	are missino	g or blank.	

Paste Reset Cancel Help

To apply rules to a variable, select the variable then check one or more rules.

The Analysis Variables list shows distributions of nonmissing values based on a scan of the data. The Rules list shows all rules that can be applied to selected variables.

All cases passed the requested checks

Validate Data

×

Warnings

Some or all requested output is not displayed because all cases, variables, or data values passed the requested checks.

Talidate Data: Define Validation Rules

Single-Variable Rules

Rules:				
Name		Type		
Likert		Numerio	0	^
1,2 dichoto	my	Numerio	C	
1 to 5 integ	ger	Numerio	C	
1 to 10 inte	eger	Numerio	C	
Nonnegativ	/e	Numerio	C	
Nonnegativ	/e i	Numerio	C	
0 to 100 nu	ım	Numerio	C	
Flag syste	m	Numerio	C	
Flag user-r	nis	Numerio	C	
Flag missi	ng	Numerio	C	
Flag nonint	teg	Numerio	C	
Flag unlab	ele	Numerio	C	
Sex (1 cha	ır.)	String		
Sex (full)		String		
Day of wee	k (String		
Day of wee				
Month (3 c	har.)	String		
Month (full)	String		
U.S. states	s (String		~
New	Dup	licate	Delete	

Na <u>m</u> e: Likert	<u>T</u> ype:	Numeric	~
	<u>F</u> ormat:	mm/dd/yyyy	
<u>V</u> alid Values:			
In a list			
Va <u>l</u> ues:			
1		^	
3			
1 2 3 4 5			
✓ Ignore case when check	ing values	~	
Allo <u>w</u> user-missing value			
✓ Allow system-missing va	lues		
✓ Allow blank values			

Help

Cancel

<u>C</u>ontinue

Single-Variable Rules

×

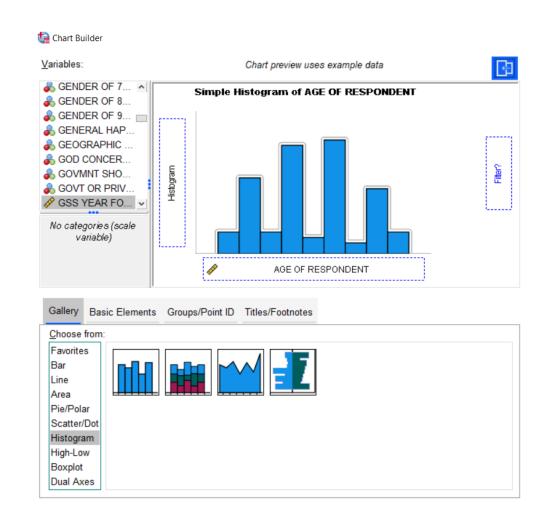
Rule Descriptions				
Rule	Description			
1 to 5 integer	Type: Numeric Domain: Range Flag user-missing values: No Flag system-missing values: No Minimum: 1 Maximum: 5 Flag unlabeled values within range: No Flag noninteger values within range: Yes \$VD.SRule[3]: Rule			
Rules violated at least once are displayed.				

Variable Summary

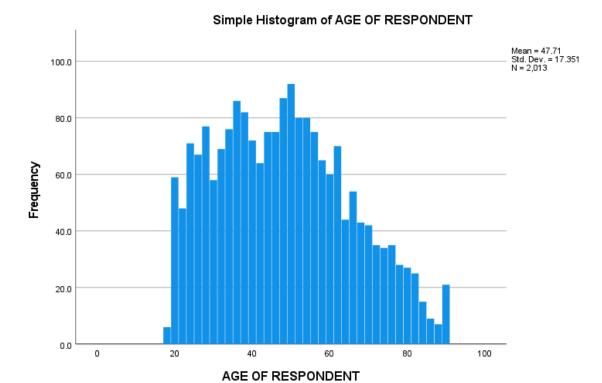
	Rule	Number of Violations
SPSS prods are an	1 to 5 integer	1
integrl prt of wrk	Total	1

Case Report

Validation Rule Violations

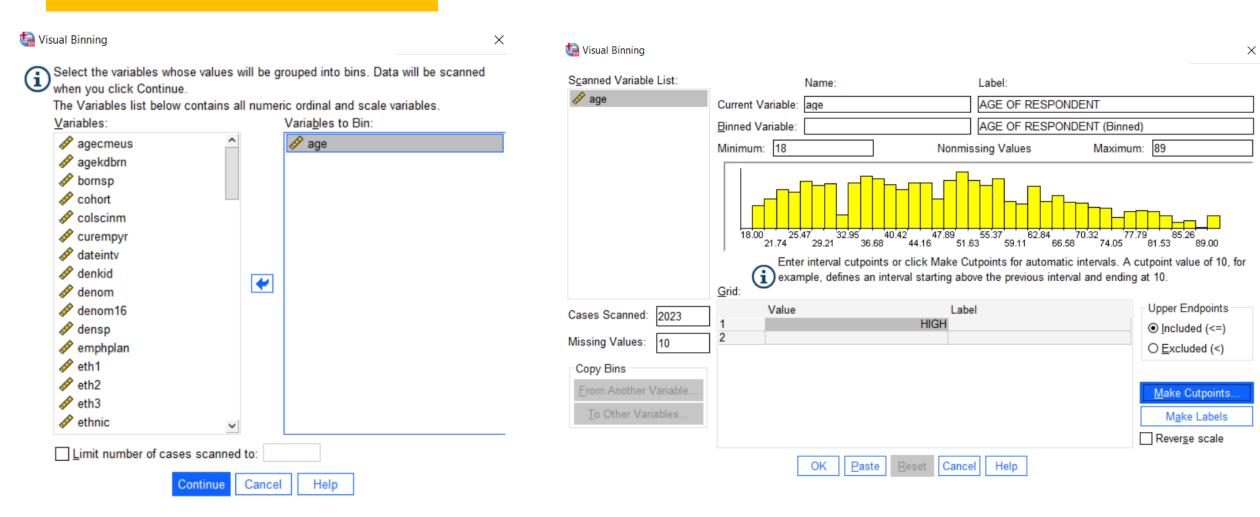

Case	Single-Variable ^a
1	1 to 5 integer (1)

a. The number of variables that violated the rule follows each rule.

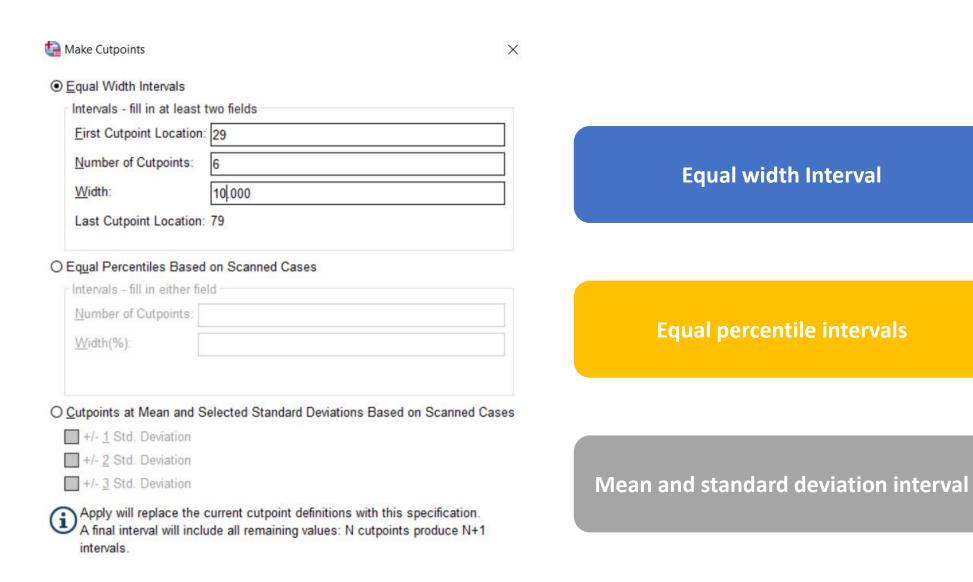

3. Variable Binning

Data: "GSS2008.SAV"

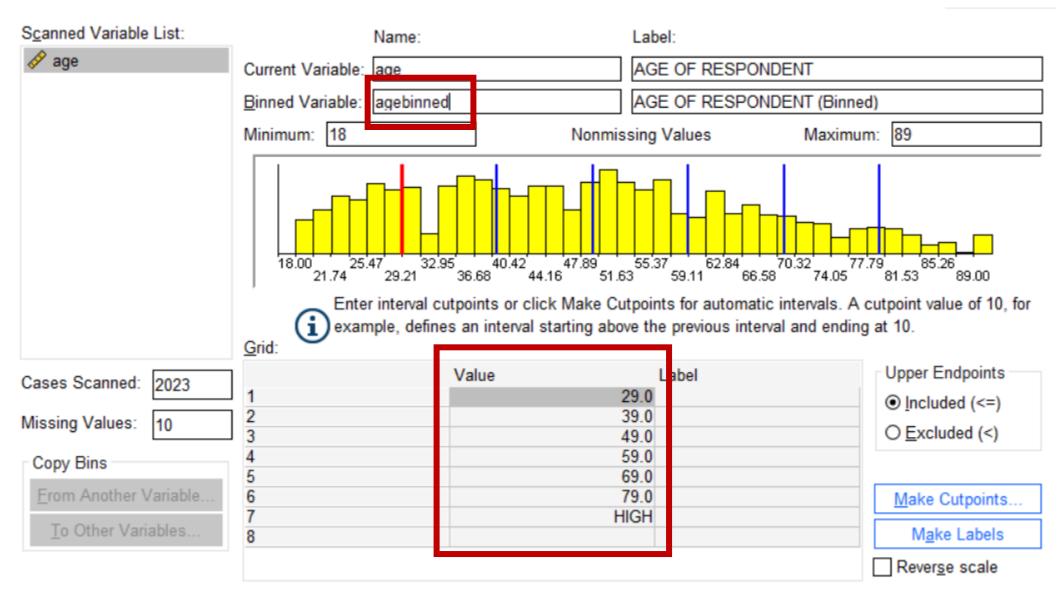
Graphs >> Chart Builder



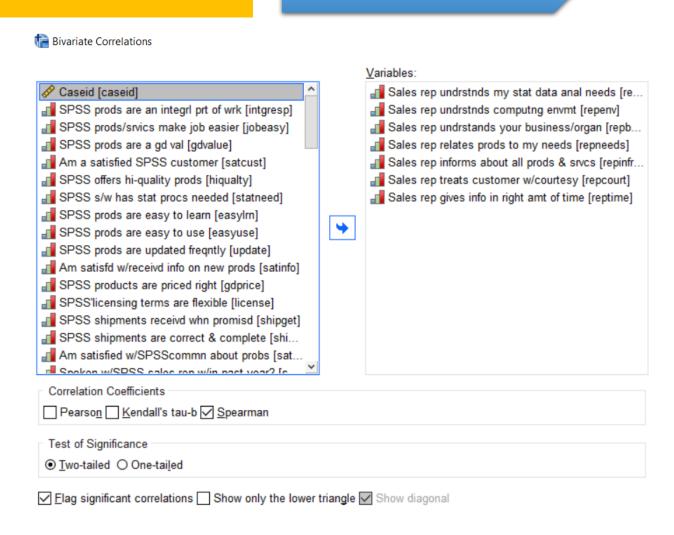
Histogram of age



Data: "GSS2008.SAV"


Transform >> Visual Binning

Make Cut points


4. Factor Analysis

Reviewing Correlation Among the Sales Rep Items

Analyze >> Correlate >> Bivariate

Data: "SPSS_CUST.SAV"

All Variables are positively related to each other

Correlations

		Sales rep undrstnds my stat data anal needs	Sales rep undrstnds computng envmt	Sales rep undrstands your business/org an	Sales rep relates prods to my needs	Sales rep informs about all prods & srvcs	Sales rep treats customer w/courtesy	Sales rep gives info in right amt of time
Sales rep undrstnds my	Pearson Correlation	1	.623**	.689**	.693**	.478**	.499**	.480**
stat data anal needs	Sig. (2-tailed)		.000	.000	.000	.000	.000	.000
	N	585	555	510	540	575	580	580
Sales rep undrstnds	Pearson Correlation	.623**	1	.702**	.593**	.534**	.418**	.523**
computng envmt	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000
	N	555	575	520	535	555	570	570
Sales rep undrstands	Pearson Correlation	.689**	.702**	1	.719**	.507**	.290**	.398**
your business/organ	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000
	N	510	520	530	515	520	525	525
Sales rep relates prods	Pearson Correlation	.693**	.593**	.719**	1	.561**	.353**	.390**
to my needs	Sig. (2-tailed)	.000	.000	.000		.000	.000	.000
	N	540	535	515	555	550	545	545
Sales rep informs about	Pearson Correlation	.478**	.534**	.507**	.561**	1	.576**	.544**
all prods & srvcs	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000
	N	575	555	520	550	610	600	600
Sales rep treats	Pearson Correlation	.499**	.418**	.290**	.353**	.576**	1	.605**
customer w/courtesy	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000
	N	580	570	525	545	600	625	620
Sales rep gives info in	Pearson Correlation	.480**	.523**	.398**	.390**	.544**	.605**	1
right amt of time	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	
	N	580	570	525	545	600	620	625

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Requesting a Factor Analysis

Choose the set of variables to be factors

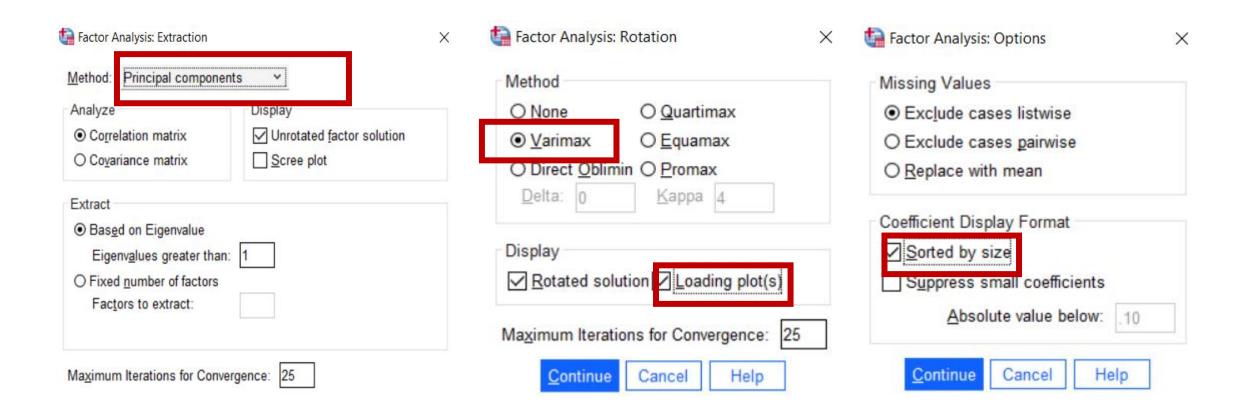
Choose a method of factor extraction

Choose a method of factor rotation

Request factor display options

Analyze >> Dimension Reduction >> Factor

Factor Analysis SPSS products are priced right [gdprice] SPSS'licensing terms are flexible [license] SPSS shipments received whn promised [shi... SPSS shipments are correct & complete [... Am satisfied w/SPSScommn about probs [... Spoken w/SPSS sales rep w/in past year?... Sales dept returns my calls promptly [repr... Ever called SPSS for tech supprt? [techcall] Satisfied w/tech support [techsat] Tech supprt answers questns quickly [tech... Tech supprt returns calls promptly [techrtn] Specialist gives response promptly [techsp... Provided needed answers [techans] Knowledge of SPSS products [techknow] Knowledge of stats [techstat] Understands computing envmt [techenv] Treated w/courtesy [techcour] ■ Do you receive Keywords? [reckeyw] Read Keywords? [readkeyw] Overall satisfaction w/Keywords [satkeyw] Amount/kind of prod info in Keywords [info...


Amount/kind of how-to info in Keywords [h... 🗸

Variables: 🚜 Sales rep undrstnds my stat data anal needs... Sales rep undrstnds computng envmt [repenv] 🚜 Sales rep undrstands your business/organ [re.. Sales rep relates prods to my needs [repneeds] 🖥 Sales rep informs about all prods & srvcs [rep.. 🚹 Sales rep treats customer w/courtesy [repco... Sales rep gives info in right amt of time [repti.. Selection Variable:

Extraction

Rotation

Options

7 Possible Factors

The extracted factors will have eigenvalues above1

Total Variance Explained

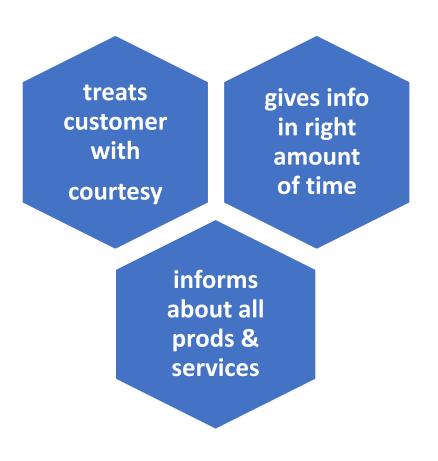
	Initial Eigenvalues			Extraction	Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	4.334	61.914	61.914	4.334	61.914	61.914	2.912	41.598	41.598	
2	1.017	14.532	76.446	1.017	14.532	76.446	2.439	34.848	76.446	
3	.477	6.811	83.257							
4	.408	5.829	89.087							
5	.335	4.784	93.871							
6	.232	3.311	97.182							
7	.197	2.818	100.000							

Extraction Method: Principal Component Analysis.

We look for a factor solution where variables have a high loading

Rotated Component Matrix^a

	Compo	onent
_	1	2
Sales rep undrstands your business/organ	.890	.188
Sales rep relates prods to my needs	.843	.234
Sales rep undrstnds my stat data anal needs	.822	.330
Sales rep undrstnds computng envmt	.681	.468
Sales rep treats customer w/courtesy	.192	.860
Sales rep gives info in right amt of time	.245	.837
Sales rep informs about all prods & srvcs	.416	.762


Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser
Normalization.

a. Rotation converged in 3 iterations.

Factor Interpretation

Component 1

Component 2

5. Reliability Analysis

Measure of the consistency of a measurement overtime

"with questions about the performance of sales reps for SPSS software, if reliability is high, respondents who strongly agree that the sale rep understand their business are also likely to agree that the sales rep understand their computing environment"

Cronbach's Alpha: varies from 0 to 1

Analyze >> Scale >> Reliability Analysis

Data: "SPSS_CUST.SAV"

Reliability Analysis	ltem	ne.	×
SPSS s/w has stat procs needed [sta SPSS prods are easy to learn [easylrn] SPSS prods are easy to use [easyuse] SPSS prods are updated freqntly [upd Am satisfd w/receivd info on new prod SPSS products are priced right [gdprice] SPSS'licensing terms are flexible [lice SPSS shipments receivd whn promisd SPSS shipments are correct & compl Am satisfied w/SPSScommn about pr Spoken w/SPSS sales rep w/in past y Sales dept returns my calls promptly [Sales rep undrstnds my stat data anal Sales rep undrstnds computing envmt Sales rep undrstands your business/o Sales rep relates prods to my needs [r Sales rep informs about all prods & sr Sales rep freats customer w/courtesy Sales rep gives info in right amt of tim Ever called SPSS for tech supprt? [te Satisfied w/tech support [techsat]	₩	Sales rep undrstnds my stat d Sales rep undrstnds computng Sales rep undrstands your bus Sales rep relates prods to my ings:	envmt [re iness/orga

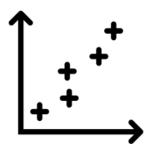
Reliability Analysis: Statistics	>
Descriptives for	Inter-Item
✓ <u>I</u> tem	Correlations
✓ <u>S</u> cale	Covarianc <u>e</u> s
✓ Sc <u>a</u> le if item deleted	
Summaries	ANOVA Table
<u>✓</u> <u>M</u> eans	None
✓ Variances	O <u>F</u> test
Covariances	O Friedman chi-square
Correlations	O Cochran chi-square
Interrater Agreement: Fleiss' Kappa Display agreement on individual cate Ignore string cases String category labels are displa Asymptotic significance level (%): 95 Missing	
 Exclude both user-missing and syst User-missing values are treated as v 	_
☐ Hotelling's T-square ☐ Intraclass correlation coefficient	☐ Tu <u>k</u> ey's test of additivity
Model: Two-Way Mixed	Type: Consistency
Confidence interval: 95 %	Test value: 0

Item Statistics

Reliability Statistics

C	Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
	.886	.889	4

	Mean	Std. Deviation	N
Sales rep undrstnds my stat data anal needs	2.30	.878	500
Sales rep undrstnds computng envmt	2.35	1.082	500
Sales rep undrstands your business/organ	2.55	1.034	500
Sales rep relates prods to my needs	2.63	1.056	500


Item-Total Statistics

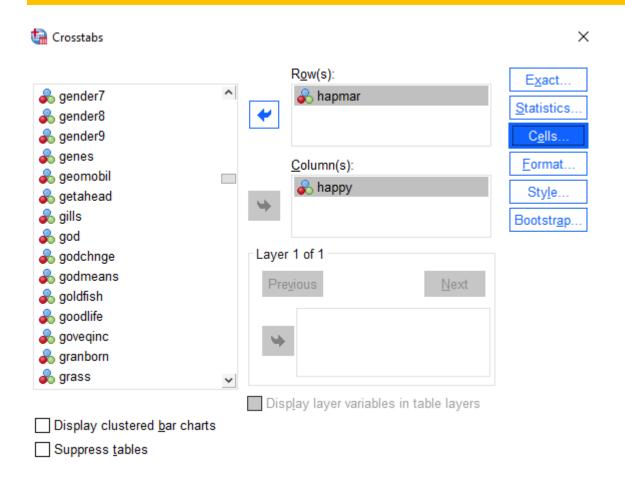
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
Sales rep undrstnds my stat data anal needs	7.53	7.644	.797	.642	.842
Sales rep undrstnds computng envmt	7.48	7.104	.696	.527	.876
Sales rep undrstands your business/organ	7.28	6.895	.795	.634	.835
Sales rep relates prods to my needs	7.20	7.054	.734	.599	.860

6. Analyzing Categorical Data

 Crosstabs are commonly used to explore how demographic characteristics are related to attitudes and behaviors

• Use to study the relationships between two, or more categorical variables

Business context

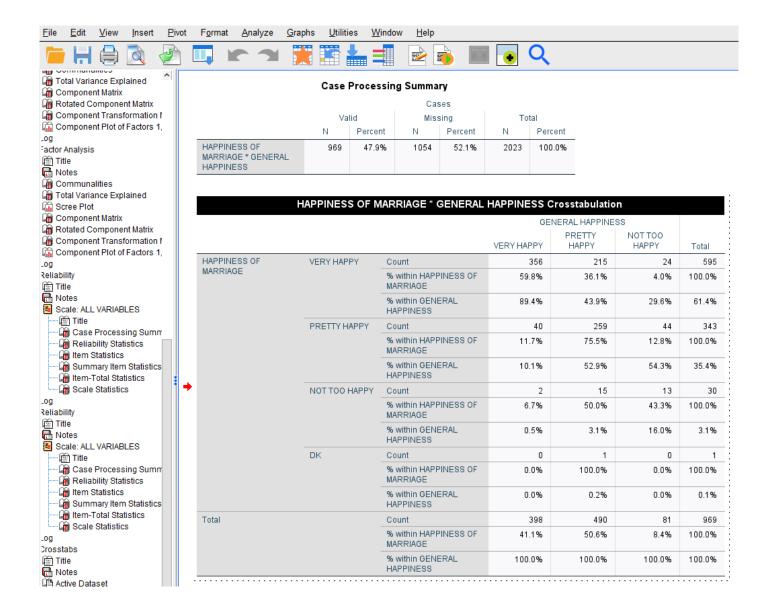

We are concerned in surveys with both descriptive and causal relationship we might want to know whether:

 Satisfaction with the instructor in a training workshop was related to satisfaction with the course material

 Eating more often at fast-food restaurant was related to more frequent shopping at convenience store

Data: "GSS2008.SAV"

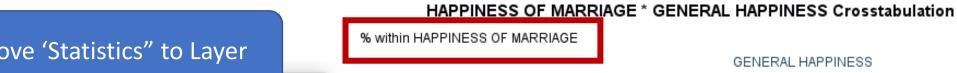
Analyze >> Descriptive >> Crosstabs


Cells

🔚 Crosstabs: Cell Display	>
Counts Observed Expected Hide small counts Less than 5	z-test Compare column proportions Adjust p-values (Bonferroni method)
- Percentages ☑ <u>R</u> ow ☑ <u>C</u> olumn ☐ <u>T</u> otal	Residuals UnstandardizedStandardizedAdjusted standardized
Create APA style table	
Noninteger Weights Round cell counts Truncate cell counts No adjustments	○ Round case <u>w</u> eights ○ Truncate case weig <u>h</u> ts

HAPPINESS OF MARRIAGE * GENERAL HAPPINESS Crosstabulation

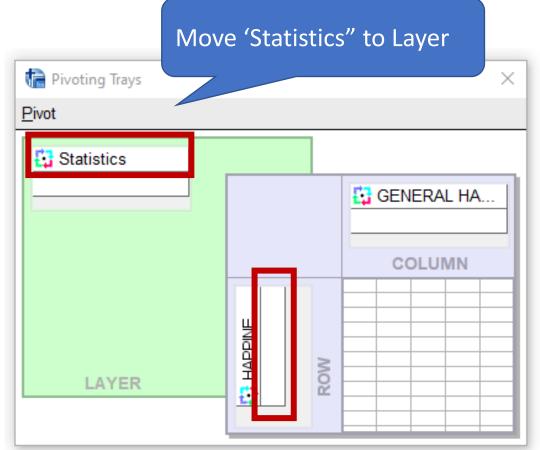
			GEI	VERAL HAPPINE	GENERAL HAPPINESS					
			VERY HAPPY	PRETTY HAPPY	NOT TOO HAPPY	Total				
HAPPINESS OF	VERY HAPPY	Count	356	215	24	595				
MARRIAGE		% within HAPPINESS OF MARRIAGE	59.8%	36.1%	4.0%	100.0%				
		% within GENERAL HAPPINESS	89.4%	43.9%	29.6%	61.4%				
	PRETTY HAPPY	Count	40	259	44	343				
		% within HAPPINESS OF MARRIAGE	11.7%	75.5%	12.8%	100.0%				
		% within GENERAL HAPPINESS	10.1%	52.9%	54.3%	35.4%				
	NOT TOO HAPPY	Count	2	15	13	30				
		% within HAPPINESS OF MARRIAGE	6.7%	50.0%	43.3%	100.0%				
		% within GENERAL HAPPINESS	0.5%	3.1%	16.0%	3.1%				
	DK	Count	0	1	0	1				
		% within HAPPINESS OF MARRIAGE	0.0%	100.0%	0.0%	100.0%				
		% within GENERAL HAPPINESS	0.0%	0.2%	0.0%	0.1%				
Total		Count	398	490	81	969				
		% within HAPPINESS OF MARRIAGE	41.1%	50.6%	8.4%	100.0%				
		% within GENERAL HAPPINESS	100.0%	100.0%	100.0%	100.0%				


Determining Whether 2 Variables are Related

Double-Click at table

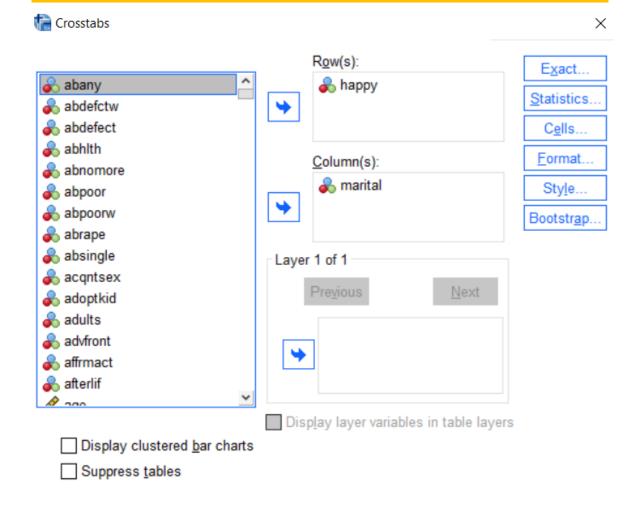
Pivot >> Pivot Trays

Select % within HAPPINESS OF MARRIAGE Statistics


	OENERAL HAFFINESS					
		VERY HAPPY	PRETTY HAPPY	NOT TOO HAPPY	Total	
HAPPINESS OF	VERY HAPPY	59.8%	36.1%	4.0%	100.0%	
MARRIAGE	PRETTY HAPPY	11.7%	75.5%	12.8%	100.0%	
	NOT TOO HAPPY	6.7%	50.0%	43.3%	100.0%	
	DK	0.0%	100.0%	0.0%	100.0%	
Total		41.1%	50.6%	8.4%	100.0%	

Count

HAPPINESS OF MARRIAGE * GENERAL HAPPINESS Crosstabulation


Count

		GENERAL HAPPINESS					
		VERY HAPPY	PRETTY HAPPY	NOT TOO HAPPY	Total		
HAPPINESS OF MARRIAGE	VERY HAPPY	356	215	24	595		
	PRETTY HAPPY	40	259	44	343		
	NOT TOO HAPPY	2	15	13	30		
	DK	0	1	0	1		
Total		398	490	81	969		

Testing Relationships for Categorical Data

Analyze >> Descriptive >> Crosstabs

Cells >> Chi-square

☑ C <u>h</u> i-square	☐ Correlations
Nominal	Ordinal
Contingency coefficient	<u>G</u> amma
Phi and Cramer's V	Somers' d
Lambda	Kendall's tau-b
Uncertainty coefficient	☐ Kendall's tau- <u>c</u>
Nominal by Interval	<u> Kappa</u>
<u> </u>	Risk
	McNemar

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	159.200ª	12	.000
Likelihood Ratio	161.952	12	.000
Linear-by-Linear Association	113.242	1	.000
N of Valid Cases	2012		

a. 5 cells (25.0%) have expected count less than 5. The minimum expected count is .07.

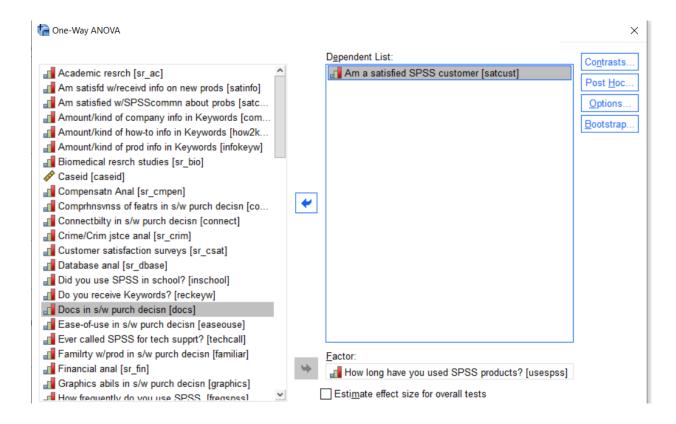
GENERAL HAPPINESS * MARITAL STATUS Crosstabulation

		MARITAL STATUS						
			MARRIED	WIDOWED	DIVORCED	SEPARATED	NEVER MARRIED	Total
GENERAL HAPPINESS	VERY HAPPY	Count	398	31	56	11	101	597
		% within GENERAL HAPPINESS	66.7%	5.2%	9.4%	1.8%	16.9%	100.0%
	PRETTY HAPPY	Count	490	95	169	41	304	1099
		% within GENERAL HAPPINESS	44.6%	8.6%	15.4%	3.7%	27.7%	100.0%
	NOT TOO HAPPY	Count	81	37	55	18	123	314
		% within GENERAL HAPPINESS	25.8%	11.8%	17.5%	5.7%	39.2%	100.0%
	DK	Count	0	1	0	0	1	2
		% within GENERAL HAPPINESS	0.0%	50.0%	0.0%	0.0%	50.0%	100.0%
Total		Count	969	164	280	70	529	2012
		% within GENERAL HAPPINESS	48.2%	8.2%	13.9%	3.5%	26.3%	100.0%

7. Analysis of Variance

Univariate analysis of variance to test for mean difference

Business context


When we examine mean difference between three or more group, we would like to know whether relationship we observe is likely to exist on our target population or instead is caused by random sampling variation.

 Statistical testing tells us whether the mean of an outcome variable is different or statistically the same in several categories of interest, e.g., customer type. Without that, we might make decision based on observed mean difference that are not likely to exist in population of customers,

Analyze >> Compare Mean >> One-Way ANOVA

Data: "SPSS_CUST.SAV"

Am a satisfied SPSS customer

Descriptives

					95% Confiden Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
LT 1 yr	115	2.83	.920	.086	2.66	3.00	1	5
1 yr-3 yrs	235	2.64	.911	.059	2.52	2.76	1	4
GT 3 yrs-5 yrs	95	2.47	.885	.091	2.29	2.65	1	4
GT 5 yrs-10 yrs	175	2.37	1.047	.079	2.22	2.53	1	5
GT 10 yrs	295	2.53	1.016	.059	2.41	2.64	1	5
Total	915	2.56	.979	.032	2.49	2.62	1	5

ANOVA

Am a satisfied SPSS customer

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	16.860	4	4.215	4.466	.001
Within Groups	858.878	910	.944		
Total	875.738	914			

Dependent

Am a satisfied SPSS customer [satcus]

Factor

How long have you used SPSS products? [usespss]

Post Hoc Multiple Comparison

One-Way ANOVA:	Post Hoc Multiple Co	omparisons ×					
Equal Variances A	ssumed						
<u>L</u> SD	S-N-K	<u>W</u> aller-Duncan					
Bonferroni	<u>T</u> ukey	Type I/Type II Error Ratio: 100					
Sidak	☐ Tu <u>k</u> ey's-b	☐ Dunn <u>e</u> tt					
Scheffe	<u>D</u> uncan	Control Category : Last					
<u>R</u> -E-G-W F	<u>H</u> ochberg's G	T2 Test					
☐ R-E-G-W <u>Q</u>	Gabriel						
Equal Variances N	lot Assumed						
Ta <u>m</u> hane's T2	Dunnett's T3	Games-Howell Dunnett's C					
Null Hypothesis te	st						
Use the same significance level [alpha] as the setting in Options							
O Specify the sig	nificance level [alph	na] for the post hoc test					
Le <u>v</u> el: 0.05							

Equality of Error Variances

Option >> Homogeneity of variance test

Levene's Test of Equality of Error Variances a,b

		Levene Statistic	df1	df2	Sig.
Am a satisfied SPSS customer	Based on Mean	2.715	4	910	.029
	Based on Median	2.399	4	910	.049
	Based on Median and with adjusted df	2.399	4	894.925	.049
	Based on trimmed mean	2.515	4	910	.040

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

- a. Dependent variable: Am a satisfied SPSS customer
- b. Design: Intercept + usespss

Does the satisfaction vary according to the time of use?

Multiple Comparisons

Dependent Variable: Am a satisfied SPSS customer

Games-Howell

(0.11	(B.H	Mean Difference (I-			95% Confide	ence Interval
(I) How long have you used SPSS products?	(J) How long have you used SPSS products?	J)	Std. Error	Sig.	Lower Bound	Upper Bound
LT 1 yr	1 yr-3 yrs	.19	.104	.377	10	.47
	GT 3 yrs-5 yrs	.35*	.125	.042	.01	.70
	GT 5 yrs-10 yrs	.45	.117	.001	.13	.78
	GT 10 yrs	.30*	.104	.035	.01	.59
1 yr-3 yrs	LT 1 yr	19	.104	.377	47	.10
	GT 3 yrs-5 yrs	.16	.109	.553	13	.46
	GT 5 yrs-10 yrs	.27	.099	.057	.00	.54
	GT 10 yrs	.11	.084	.663	12	.34
GT 3 yrs-5 yrs	LT 1 yr	35 [*]	.125	.042	70	01
	1 yr-3 yrs	16	.109	.553	46	.13
	GT 5 yrs-10 yrs	.10	.120	.915	23	.43
	GT 10 yrs	05	.108	.989	35	.25
GT 5 yrs-10 yrs	LT 1 yr	45 [*]	.117	.001	78	13
	1 yr-3 yrs	27	.099	.057	54	.00
	GT 3 yrs-5 yrs	10	.120	.915	43	.23
	GT 10 yrs	15	.099	.525	42	.12
GT 10 yrs	LT 1 yr	30*	.104	.035	59	01
	1 yr-3 yrs	11	.084	.663	34	.12
	GT 3 yrs-5 yrs	.05	.108	.989	25	.35
	GT 5 yrs-10 yrs	.15	.099	.525	12	.42

Based on observed means.

The error term is Mean Square(Error) = .944.

^{*.} The mean difference is significant at the .05 level.

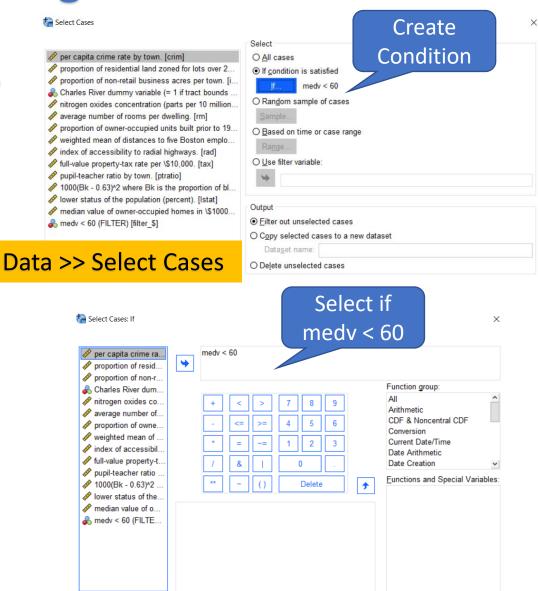
8. Associations Between Variables

Business context

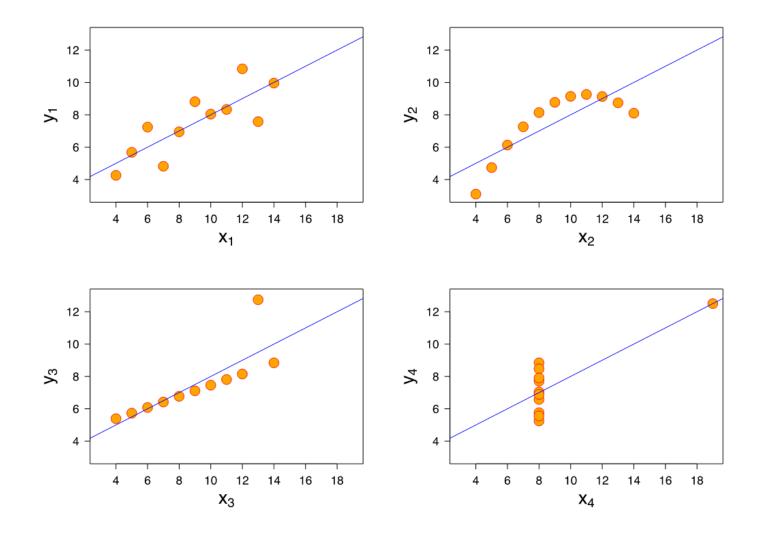
Testing for associations between variables is quite common with survey data:

• We might want to learn how a customer's age is related to the number of purchases they have made, or the total revenue from those purchases.

• In a survey of patients, we might want to learn whether satisfaction is higher physicians is correlated with overall satisfaction.

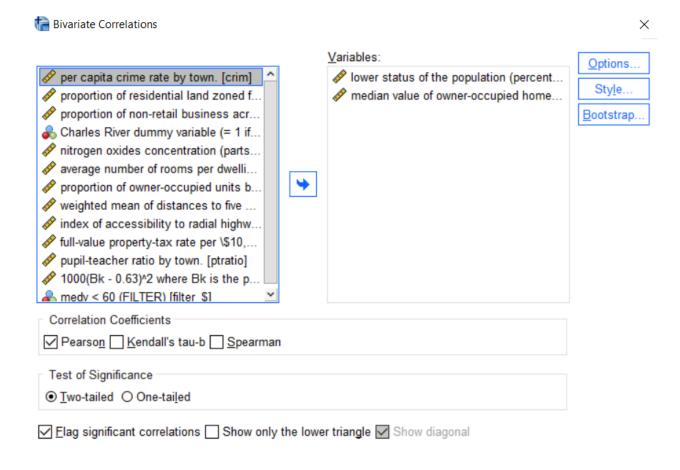

Using Scatterplots to Examine Relationships

Data: "Boston House.SAV" That Builder Variables: Graph >> Chart Builder Chart preview uses example data **Select Variables** ø crim Scatter Plot of weighted mean of distan... 🔗 zn Set color? indus 🚜 chas weighted mean of distance 🖋 nox s rm X axis: median value of owner-occupied homes [medv] 🔗 age 🔗 dis 🔗 rad Y axis: %lower status of the population [Istat] A No categories (scale variable) median value of owner-occupied Basic Elements Groups/Point ID Titles/Footnotes Choose from: Favorites Line Area Pie/Polar Select Chart Type Scatter/Dot Histogram High-Low Boxplot


Dual Axes

Remove Outlier and create chart again

Extreme Value 80.0 ě 40.00 60.00 80.00 lower status of the population (percent).


Anscombe's Quartet

The correlation between *x* and *y* is 0.816 for each dataset

Correlations Coefficient

Analyze >> Correlate >> Bivariate Correlations

Correlations

		lower status of the population (percent).	median value of owner- occupied homes in \\$1000s.
lower status of the	Pearson Correlation	1	738**
population (percent).	Sig. (2-tailed)		.000
	N	506	506
median value of owner-	Pearson Correlation	738 ^{**}	1
occupied homes in \\$1000s.	Sig. (2-tailed)	.000	
	N	506	506

^{**.} Correlation is significant at the 0.01 level (2-tailed).

9. Regression Analysis

Business context

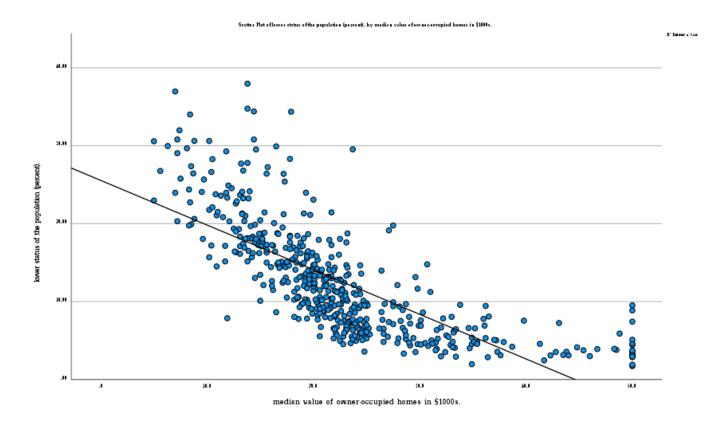
Multivariate regression is the basic technique used to create models to predict an outcome or dependent variable. It is used in almost all industries.

- Models can be developed to predict customer satisfaction based on rating of various aspects of product/services
- Models can be developed to predict customer revenue based on previous revenue and other customer characteristics.

Non linear correlation

Analyze >> Regression >> Linear

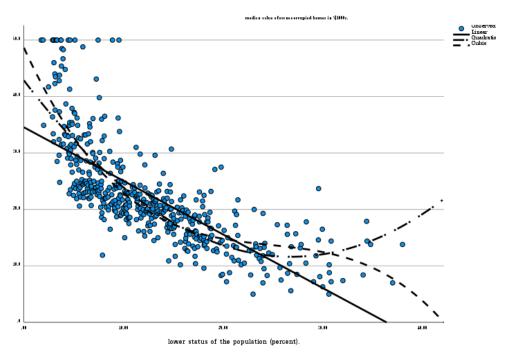
Model Summary


Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.738ª	.544	.543	6.2158

 a. Predictors: (Constant), lower status of the population (percent).

Coefficientsa

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	34.554	.563		61.415	.000
	lower status of the population (percent).	950	.039	738	-24.528	.000

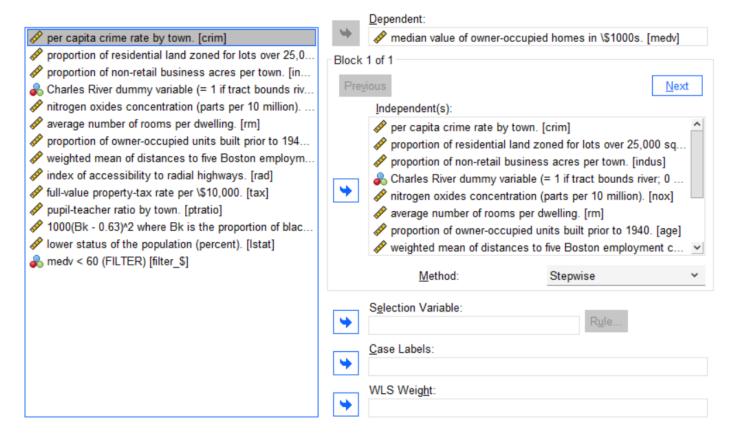

a. Dependent Variable: median value of owner-occupied homes in \\$1000s.

Which line is the best fit?

Analyze >> Regression >> Curve Estimate

Telegraphic Curve Estimation			
per capita crime rate by town. [crim] proportion of residential land zoned for lots ov proportion of non-retail business acres per to Charles River dummy variable (= 1 if tract bou nitrogen oxides concentration (parts per 10 m average number of rooms per dwelling. [rm] proportion of owner-occupied units built prior t weighted mean of distances to five Boston e	Dependent(s): median value of owner-occupied homes in \\$1 Independent Variable: lower status of the population (percent). [Istat] Time		
onitrogen oxides concentration (parts per 10 m one average number of rooms per dwelling. [rm] one proportion of owner-occupied units built prior t one weighted mean of distances to five Boston e one index of accessibility to radial highways. [rad] one full-value property-tax rate per \\$10,000. [tax] one pupil-teacher ratio by town. [ptratio] one 1000(Bk - 0.63)^2 where Bk is the proportion one medv < 60 (FILTER) [filter_\$]	lower status of the population (percent). [Istat]	☑ Include constant in equatio ☑ Plot models	
	☐ Inverse ☐ Power: ☐ Logistic ☐ Upper bound: ☐ ☐ Display ANOVA table		

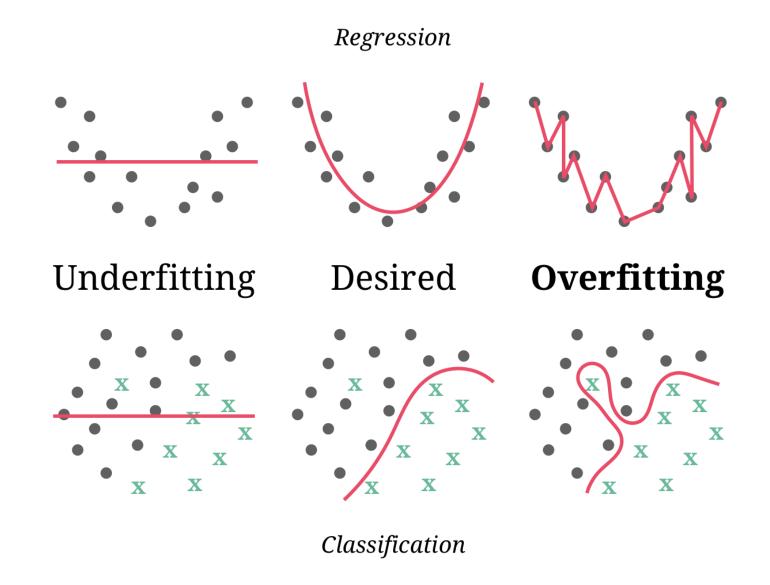
Model Summary and Parameter Estimates


Dependent Variable: median value of owner-occupied homes in \\$1000s.

Model Summary				Parameter Estimates					
Equation	R Square	F	df1	df2	Sig.	Constant	b1	b2	b3
Linear	.544	601.618	1	504	.000	34.554	950		
Quadratic	.641	448.505	2	503	.000	42.862	-2.333	.044	
Cubic	.658	321.728	3	502	.000	48.650	-3.866	.149	002

The independent variable is lower status of the population (percent)...

Stepwise Regression



Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.738ª	.544	.543	6.2158
2	.799 ^b	.639	.637	5.5403
3	.824°	.679	.677	5.2294
4	.831 ^d	.690	.688	5.1386
5	.841 ^e	.708	.705	4.9939
6	.846 ^f	.716	.712	4.9326
7	.850 ^g	.722	.718	4.8818
8	.852 ^h	.727	.722	4.8474
9	.854 ⁱ	.729	.724	4.8326
10	.857 ^j	.734	.729	4.7895
11	.861 ^k	.741	.735	4.7362

Overfit Problem

Q&A